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Foreword 

The Tactical ASW Environmental Acoustic Support pro- 
gram office has been chartered to maintain and upgrade 
prediction models that are in operational use at the 
Fleet Numerical Oceanography Center, Monterey. This 
report presents an assessment of the near-surface 
propagation submodels currently used  in SHARPS  III. 

G.T. Phelps, Captain, USN 
Commanding Officer, NORDA 



Executive Summary 

The propagation submodels of SHARPS III are assessed 
for their applicability to near-surface sound velocity 
conditions. The near-surface channel configurations 
addressed by the current version of SHARPS are too 
limited. The options are limited to surface ducts and 
subsurface ducts, as modeled by the Advanced AMOS 
equations. All other channel configurations are 
handled by ray theory. A SHARPS input known as the 
sonic layer depth (SLD) is demonstrated to be in occa- 
sional contrast with the layer depth of a classical 
surface duct. Simple expressions based on ray theory 
and phase integral methods are used to demonstrate the 
sensitivity of selected acoustic parameters to vari- 
ations of in-layer sound velocity gradient. Changes 
that have been made to the original AMOS equations are 
reviewed, and results from a recent evaluation of 
several operational surface duct models are presented. 
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Comments and Issues Pertinent to 
SHARPS III Near-Surface Propagation Modeling 

1.0 Introduction i 

This report addresses near-surface 
propagation modeling issues pertinent 
to the Ship Helicoptor Active Range 
Prediction System (SHARPS). SHARPS is 
implemented on a dally basis to gener- 
ate forecasts of detection range for 
Fleet active sonar systems operating in 
a wide variety of ocean environments. 
The schedule and volume of forecasts 
and requests preclude the use of highly 
sophisticated acoustic models. Conse- 
quently, specific modules of SHARPS are 
required to satisfy stringent computa- 
tion time specifications. 

In an effort to meet these specifica- 
tions a semlempirical model derived 
from the AMOS data (Marsh and Schulkin, 
1954) has provided the basis for near- 
surface propagation modeling in both 
the second and third generation ver- 
sions of SHARPS. The basic AMOS model 
accommodates two modes of propagation: 
surface duct and subsurface duct. The 
intention here is to shed some light on 
problems noted with SHARPS detection 
range forecasts with the focus center- 
ing on those problems thought to be 
caused by the surface duct component of 
the modified AMOS model. The position 
taken here is that the AMOS model, with 
or without modifications, does a decent 
job for near-surface sound velocity 
conditions that are appropriate. There- 
in lies the problem: near-surface con- 
ditions are not always appropriate for 
the application of AMOS. Indeed, condi- 
tions can exist such that even fairly 
sophisticated normal mode models do 
not, on average, yield "better" predic- 
tion than AMOS (Hall, 1980). 

The report consists of three major 
sections: 

• Section 2 addresses the distinction 
between layer depth (for a surface 
duct) and a SHARPS input known as the 
sonic layer depth (SLD). Predominant 
profile configurations gleaned from the 
SUDS I experiment are also presented as 
a summary of channel configurations 
that need to be addressed by near- 
surface propagation models. Simple ex- 
pressions based on ray theory and phase 
Integral methods are used to demon- 
strate the sensitivity of selected 
acoustic parameters to variations of 
in-layer sound velocity gradient. 

• Section 3 reviews the changes that 
have been made to the original version 
of AMOS. The depth dependence of a 
gradient-sensitized version of AMOS is 
analyzed. 

• Section 4 reviews some long-standing 
near-surface propagation issues and 
presents results from a recent evalua- 
tion of several operational surface 
duct models. The report closes with a 
section that presents conclusions and 
recoimnendations. 

2.0 Near-Surface Sound Velocity Conditions 

This section examines near-surface 
sound velocity conditions, with empha- 
sis on the classical surface duct con- 
figuration. The question providing much 
of the impetus for such an examination 
is: 
are two-layer surface duct models 
adequate for modeling the propaga- 
tion conditions under which active 
sonars echo range against snorkel- 
ing or deep-running boats? 

The discussion begins with a definition 
of "layer depth." Some statistics de- 
rived from Surface Duct Sonar (SUDS) I 



data are used as guidelines in a dis- 
cussion of important channel configura- 
tions. The last subsection exploits two 
simple approaches to demonstrate the 
sensitivity of various acoustic param- 
eters to in-layer velocity gradient. 

2.1 The Layer Depth Problem 

In the upper few hundred meters of the 
water column, processes involving water 
mixing and a net heat flow toward the 
surface can develop a thermal structure 
that produces a surface duct. This con- 
dition is characterized by a nearly 
constant (isothermal) or slightly in- 
creasing water temperature extending 
from the surface down to the depth of 
significant mixing. Below this depth 
temperature decreases sharply. The 
depth interval over which this sharp 
decrease occurs is referred to as the 
therraocline. Under these conditions, If 
salinity is constant, sound velocity 
increases with depth from the surface 
to the top of the thermocline (or layer 
depth), and decreases sharply below 
this depth. This increasing velocity 
function above the thermocline creates 
a near-surface sound channel, referred 
to as a surface duct. Thus a surface 
duct is a near-surface sound channel 
that consists of a half-channel (with 
axis at the surface) setting on top of 
the thermocline. The depth at which the 
half-channel meets the thermocline is 
the layer depth. 

This last point is to be emphasized 
since the term layer depth, as used 
here, is restricted to a channel con- 
figuration known as the classical bi- 
linear surface duct. A similar term, 
sonic layer depth (SLD), is routinely 
used at FNOC, and this term does not 
necessarily coincide with the one de- 
scribed above. Indeed, after examining 
velocity profiles produced over a one 
month period by FNOC, SLD appears to 
coincide more closely with the top of 
the thermocline. However, the fact that 
the thermocline does not extend to the 
surface does not necessarily imply the 
existence of a surface duct. 

A value of SLD is included in each 
SHARPS message along with detection 
range forecasts. Based on criticisms 
levied against SHARPS forecasts, a non- 
zero value of SLD is evidently inter- 
preted by some message recipients to 
mean that a surface duct is present. If 
a non-zero SLD is assumed to imply that 
a surface duct exists, and if predicted 
detection ranges for certain sonar sys- 
tems do no reflect this assumption, 
then such forecasts no doubt engender 
puzzlement at the very least. 

Renner and Kirby (1983), in an attempt 
to solve the SLD problem, assessed the 
performance of three sound velocity 
profile filters. The purpose of their 
analyses was to determine if removing 
"fine structure" from the upper portion 
(above the SLD) of the profile input 
would eliminate the much criticized 
day-to-day variability observed in 
SHARPS predicted detection ranges. To 
evaluate the candidate filters, a data 
base containing 30 daily samples of 
FNOC-generated sound velocity profiles 
for eight ocean areas was assembled. 

Included with each profile was the SLD 
as determined by an algorithm in 
EXTRAC, a pre-SHARPS profile processing 
program. Figure 1 illustrates a 30 day 
sequence of profiles for one of the 
sites (Note: profiles for days 22 and 
27 are missing). The left-to-right se- 
quencing, with a 1 m/sec offset to fa- 
cilitate visual discrimination, simu- 
lates a daily time series. The FNOC- 
generated profiles are represented by 
the solid curves and filtered rendi- 
tions are indicated by the dashed 
curves. Near the top of each profile 
there is a short horizontal marker that 
indicates the reported SLD. This se- 
quence of profiles exhibits extremely 
scant variation in SLD. Indeed, the 
change in SLD over a 30 day period 
amounts to only a few meters. Most of 
the profiles from day 1 through day 20 
exhibit surface ducts. A few are 
blighted by a slightly negative- 
gradient layer at the top. The remain- 
ing profiles from day 21 through day 30 
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do not exhibit surface ducts. All of 
these profiles, however, have an SLD of 
about 40 m. Thus SHARPS predictions 
generated for any of the profiles from 
this set would indicate an SLD of about 
40 m. In some cases there is a surface 
duct, and in some cases there is a neg- 
ative gradient. The point is, a non- 
zero value of SLD does not necessarily 
imply the existence of a surface duct. 

Three modes of near-surface propagation 
are addressed by SHARPS : negative gra- 
dient, surface duct, and subsurface 
duct. The negative gradient case is 
calculated by ray theory out to the 
shadow boundary and by a diffraction 
continuation term into the shadow zone. 
Both the surface duct and subsurface 
duct cases are calculated by the modi- 
fied AMOS equations. Any of these 
modes, as well as other possibilities, 
can be extant for a non-zero SLD. If 
the velocity gradient between the sur- 
face and the SLD is negative, detection 
ranges for many sonar-target geometries 
can be expected to be short. When the 
velocity gradient is positive, detec- 
tion ranges can exhibit considerable 
latitude—depending on the "strength" 
of the channel, as well as other fac- 
tors that enter into the sonar equa- 
tion. Consequently, in terras of what 
detection ranges to expect, a non-zero 
value of SLD provides no conclusive 
information. 

The reason for including SLD in the 
SHARPS message needs to be reviewed. 
Since no other data are included to 
indicate the profile configuration 
above the SLD, its inclusion with re- 
gard to detection range predictions 
provides more confusion than informa- 
tion. In those cases when the SLD coin- 
cides with the depth of a surface duct, 
the Inclusion of SLD on the message 
makes sense. Its inclusion might also 
make sense to a conservative submarine 
skipper. That is, regardless of the 
channel configuration above the SLD, a 

conservative strategy for detection 
avoidance (by hull mounted sonars), 
would be to keep the boat below SLD. 
Otherwise its inclusion is, at best, 
curious. 

One possible approach to rectifying 
this problem has been suggested by 
LaDouce (personal communication 1983). 
Simply put, SLD would continue to be 
included in the SHARPS message, but if 
the profile configuration does not con- 
form to a two-layer surface duct, then 
this decision should somehow be indi- 
cated, perhaps on a different line of 
the message. In this way, the value of 
SLD as determined by a pre-SHARPS pro- 
file processing program is retained on 
the message, yet its significance (or 
lack of) with regard to surface duct 
detection performance is clarified. 

Unfortunately, this simple remedy does 
not solve the problem completely. Fig- 
ure 2 illustrates an "indeterminant" 
profile configuration observed by Ren- 
ner and Kirby (1983) in their analysis 
of FNOC-generated profiles. The "inde- 
terminancy" stems from the inconsisten- 
cy of the EXTRAC program in defining 

*-C(Z) 

THERMOCLINE 

Figure 2.    Profile illustrating indeter- 
minant SLD 



SLD. For most cases the deeper SLD was 
selected, corresponding to the top of 
the thennocline. On occasion, however, 
whenever the gradient of the second 
layer was strong enough, the upper SLD 
was selected. This configuration Is 
comprised of a near-surface half chan- 
nel overlaying a weak refractive chan- 
nel overlying the thermocllne. Which of 
the two SLDs indicated on the figure Is 
the "real" one? For geometries where 
both sonar and target are in the upper 
layer, a two-layer surface duct model 
based on channel parameters derived 
from the first two layers would be ap- 
propriate. If the target Is located in 
the third layer, however, then applica- 
tion of a two-layer model poses a prob- 
lem. The "solution" will probably not 
make itself evident in the form of a 
simple two-layer model. 

2.2 Important Near-Surface Channel 
Configurations 

One of the revelations derived from the 
SUDS 1 experiment Is that surface ducts 
do not necessarily sustain for either 
long durations or long distances. This 
unfortunate circumstance has been con- 
firmed by data obtained during subse- 
quent exercises as well. What is more, 
there appear to be several near-surface 
profile configurations as Important 
(and some may be even more Important) 
as the classical two-layer surface duct 
profile. 

According to Anderson and Pedersen 
(1976) the most prevalent profile con- 
figuration observed during the SUDS I 
experiment Is that of a surface duct 
above a subsurface (or depressed) duct. 
Indeed, this configuration accounts for 
34% of the recorded profiles. The clas- 
sical two-layer surface duct configura- 
tion accounts for only 17.6%. Moreover, 
three other profile configurations were 
observed nearly as often as the classi- 
cal surface duct. These configurations 
are: (1) a positive-gradient layer over 
two negative-gradient layers, (2) a 
negative-gradient channel, and (3) a 

non-symmetric depressed duct (in some 
cases a surface duct exhibiting the 
"afternoon" effect). These three con- 
figurations account for 16.5%, 15.7%, 
and 15.1% of the measurements, respec- 
tively. 

Figure 3 exhibits seven Important near- 
surface velocity profile configura- 
tions. Of these, SHARPS can make nonray 
theory predictions for only two: a sur- 
face duct (profile A) and a subsurface 
duct (profile C). Profile F is the most 
important profile configuration (ac- 
cording to SUDS I statistics), and can 
be handled by the AMOS model only under 
certain restrictions. These restric- 
tions are based on sonar-target geome- 
tries. If both sonar and target are lo- 
cated in the upper (positive-gradient) 
layer then the surface duct equations 
are applicable. If both sonar and tar- 
get are located in the depressed chan- 
nel then the subsurface duct equations 
are applicable. However, the AMOS model 
does not provide for cross-channel 
coupling, and, therefore, other sonar- 
target goemetries are handled by ray 
theory. 

The profile configuration illustrated 
in part D exhibits what Is commonly 
referred to as the "afternoon" effect. 
Its configuration coincides with the 

(A) Surface Duct 

(E) Two Weak-Gradient 
Layers Overlying 
Thermochne 

IF) Surface Duct j   (GI Negative 
Overlying j Gradient 
Refractive 
Cfiannel I 

Figure 3.    Important near-surface sound 
velocity profile configurations 



classical two-layer surface duct except 
for the upper few meters where there is 
a negative gradient. According to Frost 
(personal communication 1982), this 
type of profile is not just an after- 
noon phenomenon, at least in the Medi- 
terranean Sea, but rather it tends to 
be seasonal. The important point here 
is that the subsurface duct model of 
AMOS is not applicable for this case 
because of the extreme asjnnmetry exhib- 
ited by the majority of such channels. 

Other important profile configurations 
not modeled by SHARPS are illustrated 
in parts B and E. These configurations 
appear to be quite similar to the clas- 
sical surface duct, but some important 
differences exists with regard to prop- 
agation modeling. In profile B, an iso- 
velocity channel, there is a distinct 
absence of an energy barrier. The AMOS 
surface duct equations were derived 
from data which, on average, exhibit 
the requisite barrier. Thus, simply 
setting the in-layer gradient to some 
arbitrarily small lower bound does not 
necessarily qualify a gradient- 
sensitized version of AMOS as a decent 
model for isovelocity channels. A simi- 
lar remark holds for profile E. This 
configuration has two weak-gradient 
layers above the thermocline. An equiv- 
alent single-layer gradient could easi- 
ly, in many instances, be isovelocity 
or negative. Here again, the AMOS model 
cannot properly model either of these 
situations• 

The profile configuration shown in part 
G is handled by ray theory in SHARPS. A 
ray theory treatment for this channel 
configuration is perfectly acceptable, 
especially when a means to continue the 
solution into the shadow zone is ap- 
pended, as it is in SHARPS. A criticism 
of this approach, however, regards the 
matter of consistency. There is the 
possibility of a distinct discontinuity 
of results as the in-layer gradient 
varies from slightly positive (AMOS) to 
slightly negative (ray theory) . 

A point not dwelled upon in this dis- 
cussion pertains to the matter of pro- 
file stability. Many of the SUDS meas- 
urement events yielded results in stark 
constrast to the 30-day FNOC sequence 
illustrated in Figure 1. That is, in- 

stead of a relatively constant SLD 
characteristic of the FNOC sequence, 
many of the SUDS events revealed highly 
variable layer depths over track seg- 
ments extending over only a few kilome- 
ters. To what extent this degree of 
variability prevails is generally un- 
known. If unstable near-surface condi- 
tions are the rule, then differences 
observed between SHARPS predictions and 
actual detection performance are under- 
standable. However, if significant dif- 
ferences are observed in regions known 
to be fairly stable, then only detailed 
analyses can resolve the myriad causes 
for discrepancies. 

2.3 Sensitivity of Acoustic Parameters 

to In-Layer Gradients 

This section presents results that dem- 
onstrate the sensitivity of selected 
acoustic parameters to changes in the 
sound velocity gradient within the up- 
per layer of a classical two-layer sur- 
face duct. The impetus is provided by a 
long-standing complaint casually voiced 
by SHARPS critics. Essentially the com- 
plaint stems from the observation that 
as the in-layer thermal gradient fluc- 
tuates about zero, predicted detection 
ranges exhibits unexpectedly large 
fluctuations. 

Two simple methods are used to demon- 
strate sensitivity results. The first 
method uses ray theory to illustrate 
the dependence of the channel-limiting 
cycle-range on gradient. Conclusions 
that can be drawn regarding active- 
system detection ranges are shown to be 
strongly dependent on considerations 
not necessarily related to the in-layer 
gradient. The second method uses phase- 
integral and Wentzel-Kramers-Brillouin 
(WKB) results to demonstrate how sever- 
al "mode" parameters vary with gradi- 
ent. 



2.3.1 Cycle-Range Sensitivity 

The sensitivity of sonar-to-target 
range calculations to variations in 
sound velocity gradient can be demon- 
strated using a ray invariant. The par- 
ticular ray invariant selected for this 
purpose takes the form of the channel- 
limiting cycle range. An example of a 
corresponding ray trajectory is depic- 
ted in Figure 4. 

I 
All cycle-range results presented here 
are based on a profile model of the 
form 

r*-C 

Figure 4.    Channel-limiting ray 

or.    r^ = ^r'/' (Cyc^)z//- (4) 

C(Z) = C^/Vl - /JZ , Z <  Z^ (1) 

where j3 = 2g/C , and where g and C  are 

the in-layer velocity gradient and 
sound velocity at the surface. With 
this representation, the index of re- 
fraction squared is a linear function 
of depth. Using this profile model, the 
range integral can be written in the 
form 

r(Z)=/3"'^'(C^/C^)y"(Z^-Z')- 1/2 
dZ' 

(2) 

where   C^^   is   the   sound   velocity   at   the 

layer   depth.   Using   Snell's   law   this 
result may be  expressed  as 

r^ =  (Vg)   sin 26^ (5) 

where 6^  is  the launch angle of the ray 

trajectory. Figure 5 illustrates curves 
of channel-limiting cycle range gener- 
ated by Eq. (5) as a function of in- 
layer gradient. The sound velocity at 
the surface is taken to be 5000 f ps, 

and four curves are generated for layer 
depths of 50, 150, 250, and 350 feet. 

or, 

r(Z) = -2/3 ^^^(C /C )(Z - Z)~^^^ 
o m  m 

+ const (3) 

where Z^ and C^ are the turning point 

depth and sound velocity. The channel- 
limiting cycle range is twice this in- 
tegral evaluated from the surface to 
the bottom of the layer, or 

C3 -D 

— iD 

UJ 

.005 .010 .015 

IN-LAYER GRADIENT (1/SEC) 

.020 

r, =  2[r(Z^) r   (0)] Figure 5.    Channel-limiting cycle range 
versus in-layer gradient 



These curves demonstrate that cycle 
range increases as the in-layer gradi- 
ent decreases. These results also hold 
for sonar and target at arbitrary 
depths within the layer, as long as the 
range integral is evaluated over a com- 
plete cycle. 

level, and RD is recognition differen- 
tial. Let SL = 220 dB, TS - 15 dB, NL = 
60 dB, and RD = -5 dB. SE = 0 corre- 
sponds to a single-ping detection prob- 
ability of 0.5, so that 

2 PL = 180 dB 

The implications of these results with 
regard to detection range are difficult 
to assess in general. In situations 
where volume attenuation and surface 
losses are not overbearing, some indi- 
cation of the impact on propagation 
loss can be gleaned from the modified 
AMOS model (Section 3.2). From Eq. (6) 
the transition zone between spherical 
and cylindrical spreading regimes can 
be seen to extend to ranges somewhat 
beyond the channel-limiting cycle 
range. Inside this zone, the nondissi- 
pative contribution to propagation loss 
is generally not too significant. The 
major increase to propagation loss as 
this zone extends in range is due to 
the volume attenuation term,avr. In 
this case there is the possibility that 
detection range increases with decreas- 
ing gradient, at least out to that 
range where the attenuation term causes 
the propagation loss to exceed a given 
FOM. 

yields the value of PL that corresponds 
to the detection range. For this con- 
trived example, propagation loss raono- 
tohically increases with range, and, 
therefore, finding the detection range 
is a simple process. 

Figure 6 illustrates five one-way prop- 
agation loss versus range curves gener- 
ated by a gradient-sensitive version of 
AMOS. The five values of in-layer ve- 
locity gradient selected for this exam- 
ple are 0.02, 0.01, 0.005, 0.0025, and 
0.001 (1/sec). The dashed line repre- 
sents the equivalent one-way FOM level 
of 90 dB. The detection ranges are de- 
termined by noting where the curves 
intercept the FOM line. These ranges 
are indicated on the figure, and can be 
seen to increase for decreasing gradi- 
ent. Indeed, the resulting variations 
in detection range to changes in gradi- 
ent are consistent with the results 
presented in Figure 5. 

As an example of this possibility, con- 
sider the following case. Suppose that 
a short-pulse sonar is closing on a 
high-Doppler target, so that reverbera- 
tion returns are shifted out of the 
processing band. In such a case the 
search operation is conducted under 
noise-limited conditions. As a conse- 
quence the sonar equation assumes the 
simple form 

This degree of sensitivity is not al- 
ways so evident, as the following exam- 
ple demonstrates. Suppose that surface 
reverberation is dominant, so that the 
masking level essentially coincides 
with the surface reverberation level. 
The sonar equation then takes the form 

SE = SL - 2PL + TS - RL - RD. 

SE = SL  - 2 PL + TS - NL - RD, (6) 

where SE is signal excess, SL is source 
level, PL is one-way propagation loss, 
TS is target strength, NL is noise 

The reverberation level, RL, in this 
case is given by 

RL = SL   - 2PL' + SS + 10 log A, 
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Figure 6.    PL vs R curves intercepting 
FOM level 

where SS denotes surface backscatterlng 
strength and A is the area of surface 
ensonified. Thus signal excess may be 
expressed as 

SE = 2(PL' - PL) + TS - SS 

- 10 log A - RD 

where for simplicity beam pattern cor- 
rections have been ignored. 

The difference between PL and PL' is 
not likely to be significant since re- 
turns from the surface have to arrive 
at the same time as the target echoes. 
Hence the propagation paths (confined 
to a surface duct) are not radically 
different. Thus, 

SE TS - SS - 10 log A - RD 

indicating that the detection range is 
largely dependent on factors other than 
those Involved in propagation. 

The analyses employed in these examples 
are overly simplified, but the intent 

here is to examine two contrasting pos- 
sibilities. These two examples indicate 
that the expected sensitivity of detec- 
tion range to in-layer gradient is 
strongly evident under one set of con- 
ditions . 

Generally, rules of thumb can be fruit- 
fully applied under the right condi- 
tions, but more often than not they are 
belied by the intrinsic complexities of 
the ocean medium. Sonar system perform- 
ance prediction, in particular, is con- 
founded by an infrastructure of factors 
far too complex to accede to simple 
rules of thumb. The application of sim- 
ple ray theory, for example, with no 
consideration given to other factors, 
can lead to conclusions that do not 
always converge toward ground truth. 

2.3.2 Mode Parameter Sensitivity 

This section exploits phase integral 
and WKB methods to analyze the sensi- 
tivity of certain mode parameters to 
variations of in-layer sound velocity 
gradient. Derivations for most of the 
expressions used here are not included, 
since they are adequately presented by 
Furry (1945) and by Freehafer (1951). 
These methods have been applied to un- 
derwater acoustic surface duct problems 
by several investigators over the past 
two decades. Pedersen and Gordon (1965) 
make use of these methods to obtain 
starting eigenvalues required for nor- 
mal mode solution. Kibblewhite and Den- 
ham (1965) exploit these methods to 
analyze experimental surface duct data. 
In more recent work. Hall (1976) in- 
vestigates the accuracy of WKB solu- 
tions for the surface duct problem, and 
Barnard and Deavenport (1978) use the 
phase integral method to incorporate 
surface roughness effects into a normal 
mode solution. 

The results used in this sensitivity 
analysis stem from the phase integral 
and approximate (WKB) solutions to the 
reduced wave equation. This equation 
takes the form 

I 



d u/dz    + k    su = 0 
o (7) . .... -1/2,     ,1/2 

A    =   (2//       s dz   ) (10) 

where k    =  27rf/C   ,  and o o The basic form of the phase Integral is 

s = N(Z)^ _ (k /k N2 
n o-^ • (8) 

Zn 

4 1/2 2k/  s ' dz + 0^ + 0^ 

N(Z) is the index of refraction, 
C /C(Z), and k^ is the usual separation 

parameter. If interest is confined to 
in-layer solutions, the real part of k^ 

is significantly larger than the imagi- 
nary part and useful approximate solu- 
tions to Eq. (7) can be obtained by 
replacing k^ with Kn = Re(kn) • With 

this stipulation the solutions to Eq. 
(7) are given by 

U^(Z) = k^s cos[ k / s   dz 

=  2m.1T,  m=0, 1, (11) 

For an exp(-icJt) time dependence the 
phase-change terms are 0 = -TT for sur- 
face reflections and 0 = -IT/2 for par- 
tial wave reflections at the turning 
points, and hence Eq. (11) takes the 
more specific form 

dz = 2(m + 3/4)TT. 

- 7r/4 ] , 0 < Z < Zn (9a) 
Dividing out the 2 and replacing m by 
n-1, where n is the mode index, this 
result becomes 

and 

U (Z) 
n 

2 A IsI    exp [-k 

12 dz = (n - 1/4)TT, n=l, 2, 

(12) 

/  |s|^/^dz]. Z < Z < Z, 
n       L 

Using the profile model given by Eq. 
(9b)    (1) 

where Z  denotes layer depth and Z^ is 

the turning point depth of the n-th 
mode. The normalization factor, A^, is 

..-l'''^ - [lN(Z)^ - (K„/k^)^|]'''   (13) 
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where Z = [1 - (K^^/k ) ]//J . The K^^ are 

solutions to the characteristic equa- 
tion U^(0) = 0. From Eq. (9a) this con- 

dition is satisfied for K^ such that 

Jo 
s  dz - TT/A = m7r/2, 

m = 1, 3, 5, . (14) 

After shifting to the mode index, this 
condition coincides with Eq. (12). Thus 
Kn = 27rf/Cn> C^ being the sound veloc- 

ity at the turning point depth Z,^. 

Carrying out the integration Indicated 
in Eq. (12) yields 

(2k^/3)3^^^Z^/^ = (n - 1/4)TT 

so that 

(15) 

Z = [3(n - 1/4)^/2 k -^3 ^^^j?/^   (16) 
n o 

Freehafer   (p.   96,    1951)   defines   the 
quantity 

H =   (k^B)-^/^ o (17) 

which serves as a "natural" unit of 
depth. In terms of H the expression for 
Zn becomes 

Z  = [ 3(n - 1/4)7T/2]^^^H. (18) 

The number of trapped modes is obtained 
from this equation by setting Z^ equal 
to the layer depth, or 

3/2 
N = 1/4 + (2/3TT)(Z^/H), 

or, 

3/2   1/2 
N = 1/4 + (2/3) (2Z /C )^'^  fg "■ 

L  o 

(19a) 

(19b) 

Figure 7 presents curves illustrating 
how the number of trapped modes varies 
with in-layer gradient. 

The lowest (cutoff) frequency that will 
allow just one trapped mode is also 
obtained from Eq. (18) with Z^= Z^, and 
is given by 

CO o    L ° 
(20a) 

UJ 
Q 
O 

Q. 

< 

o 
LU 
m 

.005 .010 .015 

IN-LAYER GRADIENT (1/SEC) 

020 

Figure 7.    Number of modes versus in- 
layer gradient 
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Representing C  by a nominal value re- 

sults in some simplification. For C 
1500 m/s, ° 

f  = 23107(g zh,^^" (Z^ in meters) 
CO 1J LJ 

(20b) 

and for C = 5000 ft/sec. 

f  = 140625(g zh,^^^     (Z, in feet) CO L        L 

(20c) 

Figure 8 presents curves illustrating 
how the mode cutoff frequency varies 
with in-layer gradient. 

Holding everything else constant, the 
shallowest duct that will support only 
one trapped mode is obtained from Eq. 
(18) by setting n = 1, or 

min (Z ) = (9TT/8)^'^\ S 2.32 H 

or 

min iZ)   =   il.''\  f''\'l\} (21) 
LI O 

Figure 9 displays curves illustrating 
how minimum layer depth varies with 
in-layer gradient. 

Pedersen and Gordon (1965) present a 
dimensionless parameter, M, that serves 
as a measure of the "strength" of a 
surface duct. This parameter is given 
by 

M =  Z,/H 
Li 

(22) 

> 
u 

.005 .010 .015 

IN-LAYER GRADIENT (1/SEC) 

.020 

Figure 8.    Cutoff frequency versus in- 
layer gradient 

between 1 and 2. Using Eq. (18), the 
turning point depths for the first two 
modes are 2.32 H and 4.08 H, and hence 
for marginal trapping near cutoff 

2.32 < M < 4.08. (23) 

This result indicates that the cutoff 
condition is approached for values of M 
as large as 4. 

.005    .010    .015 

IN-LAYER GRADIENT (1/SEC) 

.020 

For conditions near cutoff the number 
of modes as determined by Eq. (19) is 
actually a noninteger value that falls 

Figure 9.    Minimum layer depth versus 
in-layer gradient 
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Some of the mode-parameter results pre- 
sented here may appear to contradict 
the ray-parameter results of Sect. 
2.3.1. What should be considered, how- 
ever, is that the ray theory results 
merely provide guidance on how the 
channel-limiting cycle-range varies 
with in-layer gradient. These results 
say nothing about how acoustic energy 
is distributed throughout the channel. 
The mode parameters, however, provide 
guidance on how much energy is trapped 
in the duct as the in-layer gradient 
varies. Generally, as the in-layer 
gradient gets weaker less energy is 
trapped. Note also that none of the 
results presented here provides guid- 
ance on either cross-layer or below- 
layer performance. Such guidance is 
well beyond the capabilities of first- 
order WKB theory. Indeed, such guidance 
can be obtained only from mathematical- 
ly more sophisticated threatments of 
the surface duct problem. 

3.0 AMOS Models 

The genesis of AMOS models began with a 
set of seraiempirical equations derived 
from experimental data (Marsh and 
Schulkin, 1954). These equations are 
applicable to two near-surface propaga- 
tion conditions, surface duct and sub- 
surface duct. These conditions are 
handled by two distinct algorithms. 
Only the surface duct algorithm is ad- 
dressed here. The original surface duct 
equations are partially reproduced in 
Appendix A. Models seldom survive for 
long without undergoing modifications 
in one form or another, and the AMOS 
model is no exception. Sections 3.1 
through 3.3 address modifications that 
have been made to both NISSM and SHARPS 
III. Section 3.4 presents an assessment 
of the AMOS depth-loss functions. 

3.1 Versions of AMOS 

The AMOS model is modular in structure 
and is thus amenable to changes in spe- 
cific components. The modifications 
that were made to the NISSM version of 
AMOS did not alter the basic range and 

depth-dependent functions. These modi- 
fications include changes in the ex- 
pressions for the absorption coeffi- 
cient and the surface scattering coef- 
ficient . 

To extend the validity of the AMOS pre- 
dictions to low frequencies an additive 
cutoff term has been incorporated. The 
cutoff term is based on an approxima- 
tion to the normal-mode surface duct 
model of Pedersen and Gordon (1965). 
Details of the cutoff loss term are 
presented in Section 3.3. 

Modifications to the SHARPS III version 
of AMOS are more dramatic than those 
applied to the NISSM version. Kirby 
(1981) refers to this version as Ad- 
vanced AMOS. In Advanced AMOS the sur- 
face duct equations have been sensi- 
tized to both in- and below-layer ve- 
locity gradients. A rationale for this 
sensitization process is presented in 
Section 3.2. 

3.2 A Gradient-Sensitive AMOS 

The version of the AMOS surface duct 
equations presently used in SHARPS III 
has been modified to more properly re- 
flect changes in propagation conditions 
that can result from slight changes in 
both in-layer and below-layer sound 
velocity gradients (Kirby, 1981). This 
modification, essentially, leaves the 
basic form of the depth-dependent fac- 
tors unaffected, and hence the sensi- 
tivity to channel gradients still is 
not quite correct. Only the zone delin- 
eation parameters are affected. Review- 
ing the AMOS surface duct expressions 
(see Appendix A) they are seen to rep- 
resent different spreading-law regimes 
depending on sonar-to-target separation 
range. Three such regimes are defined 
so that as range increases there is a 
"smooth" transition from spherical to 
cylindrical spreading. The quantities 
used in AMOS to define these transition 
ranges are referred to here as scaled 
zone-delineation parameters. These 
parameters are calculated from expres- 
sions having the forms 
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p(z) = (1 - t)/4, (in layer)      (24) 

and 

p(z) = (t^ - l)^^^/5, (below layer) 
(25) 

the in-layer and below-layer segments 
are approximately 

r (Z) = (Z  - Z)^/2/4, (in layer)  (28) 

where t is the ratio of the sonar (or 
target) depth (Z) to the layer depth 
(Z^). In the SHARPS version of AMOS, 

these expressions are replaced by sim- 
ilar quantities obtained from the con- 
tinuous-gradient raytrace code that is 
used in other subroutines (Kirby, 
1982). However, simple contant-gradient 
ray theory may be exploited to demon- 
strate how the channel gradients can be 
factored Into the AMOS equations. 

Essentially the quantities given in Eq. 
(24) and Eq. (25) represent scaled 
range segments along the channel- 
limiting ray that forms a circular tra- 
jectory connecting sonar and target. 
Each of the corresponding ray path seg- 
ments takes the form 

r^(Z) (C c^'^l, (26) 

and 

1/2 
r (Z) = (Z - Z ) '15   (below layer). 

LI LI 

(29) 

Factoring out  Z  from the  radicals 
yields 

r^(Z)/Z^/^ = (1 - t^)^/^/4 (in layer) 

(30) 

and 

^L^^^/^L 
1/2    2    1/2 
'^  =   (t  - 1) ' /5 

(below-layer). 
(31) 

where C  and C  are the velocities at 

the layer depth and the sonar (or tar- 
get) depth, respectively, and g is 
either the in-layer or the below-layer 
sound velocity gradient. This expres- 
sion gives the horizontal range from a 
sonar (or target) depth to the point at 
the layer depth where the ray trajec- 
tory is horizontal. This expression can 
be approximated by 

Reducing the in-layer expression fur- 
ther to the form given in the original 
equations is difficult to rationalize, 
based on the simple assumptions made 
here. Nevertheless, replacing the orig- 
inal zone delineation expressions with 
expressions derived from constant- 
gradient ray theory is straightforward 
and appears to offer little risk with 
regard to altering other factors in the 
AMOS equations. 

r^(Z) = (2C/g)^/^ (Z^ - Z)^/^    (27) 

where C is a nominal value of sound ve- 
locity. Let C = 4950 fps and let g take 
on the value 0.0176 fps/ft for the in- 
layer case and -0.0275 for the below- 
layer case. Then after converting from 
feet to kiloyards (dividing by 3000), 

Of course, care must be exercised when 
the gradient-sensitive "skip" distance 
is factored into the AMOS equations. 
The original equations use scaled vari- 
ables, where the scaling factor is 
twice the nominal skip distance. The 
so-called skip distance is the range 
spanned by the surface-to-surface chan- 
nel limiting ray, given by 
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2(c: ^y^/^- (32) 

Advanced AMOS retains the nominal skip 
distance that is used in the original 
equations. Using the same values for C 

and g   (in-layer  value)  as  above, 

expressing the layer depth in feet, and 
converting to kiloyards yields 

^c = \     /2 (33) 

for   the   nominal   skip   distance   (i.e, 
channel-limiting cycle range). 

(r + r )lz]'^ 
s   c  L 

p  + 1/2. 
s 

(36) 

Thus by simply replacing p by r  and 

Ps "■  ^'^   ^y ^s + ^c- 
the AMOS equations 

become sensitized, partially at least, 
to the channel velocity gradients. 

A similar treatment can be given to Eq. 
(A4) of Appendix A, although to do so 
requires some imagination along with a 
few gross assumptions. This equation 
can be rewritten as 

H = 20 log r + a r + (F/25) 
1/3 

D' 

where 

The following considerations indicate 
how a dependence on in-layer and below- 
layer gradients can be introduced into 
the AMOS equations (Appendix A) without 
at the same time introducing factors 
that might alter the depth-loss func- 
tions. A reasonable demarkation between 
the spherical spreading and transition 
zones is the range between sonar (Z ) 

o 
and target (Z) via the channel-limiting 
ray. Denoting this range by r , these 
zones are delineated by 

■^s = ^L (^o) -^ ^L (2> (34) 

If this equation is divided by zj'^ ., 

the scaled equivalent is approximately 

Pg = P(Z^) + P(Z). (35) 

A reasonable demarkation between the 
transition and cylindrical spreading 
zones is r  + r . If these ranges are 

1 1^ divided by Zr'", the scaled equivalent 

is given by p + 1/2, that is. 

^^0=25- (IZ, -ZJ)^/'- (|Z-Zj)l/2 

+ 5r 

or 

J/2. 

- (|Z - \\j'^l^  + r] (37) 

Now a "typical" layer depth is 100' so 
thiat a "typical" skip distance is 5 kyd 

1/2 
(•=Z/2 ) . Thus the 5 that appears as the 

L 
first term Inside the brackets is re- 
placed  by  r the  channel-limiting 

cycle range (or skip distance). The 
depth-dependent terms (vei'y) approxi- 
mately add up to r , the range between 

sonar and target via the chsinnel limit- 
ing ray. Making these replacements 
yields. 

'^D - 5[^c - S + ^1 (38) 

The particular approach taken here to 
introduce channel gradients into the 
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AMOS equations does not represent the 
only possibility. Other possibilities 
notwithstanding, however, the above 
gradient-sensitization scheme is used 
in demonstrating the impact of such a 
modification. An example of this 
gradient-sensitization process is il- 
lustrated in Figure 6. A comparison of 
Figure 5 and Figure 6 indicates that 
the variation with in-layer gradient 
agrees with ray theory. But, without 
also introducing gradient sensitivity 
into the depth-dependent factors, the 
sensitization as outlined here cannot 
be considered totally satisfactory. 
Additional comments on AMOS depth- 
dependence are presented in Section 
3.4. 

3.3 The Low Frequency Cutoff Term 

One of the modifications made to the 
AMOS surface duct model when the NISSM 
model was developed is the addition of 
a low-frequency "cutoff" term. A review 
of the various NISSM and SHARPS docu- 
ments reveals that explanations of the 
origin of this term are somewhat weak. 
The AMOS equations are semiempirical in 
nature, and as such do not exhibit fea- 
tures characteristic of mode solutions. 
The addition of the "cutoff" term is 
intended to partially account for mode 
attenuation effects. Since there is no 
mode-like summation in the AMOS model, 
the Impact of an additive term should 
be minimal for conditions reflecting 
strong ducting. For conditions reflect- 
ing weak ducting, however, the addition 
of the first mode attenuation term 
should enhance the predictive ability 
of the AMOS model. Thus, the first-mode 
attenuation factor of a normal mode 
solution was decided upon. 

The added term is referred to as a cut- 
off term because it is expected to have 
its major impact when only one trapped 
mode is present. That is, for any com- 
bination of frequency and profile 
parameters such that Eq. (19) yields a 
value of N near 1, the propagation of 
trapped energy is near cutoff. Holding 
the profile parameters constant, there 

is a minimum frequency that allows the 
duct to support one trapped mode. This 
cutoff frequency is given by Eq. (20). 

The cutoff term used in NISSM is de- 
rived from the Pedersen and Gordon 
(1965) two-layer normal model surface 
duct mode. This model uses a rigorous 
normal mode solution to the wave equa- 
tion. The solution can be written as 

Y = -iir E ,(2) (k r)U (Z )U (Z)    (39) 
n  n  o n 

where the U^  are normalized eigenfunc- 

tions evaluated at source (Z ) and re- 
o 

ceiver (Z) depths. If the Hankel func- 
tion is replaced by the first term of 
its asymptotic expansion, propagation 
loss, H, can be expressed as 

H = -10 log |f' 

= -10 loE f<i: A COS0 )' 
n   n 

2n + (>  A sine ) ] 
^ • n   n 

-10 log (C /f) + 10 log r     (40) 

where 

A = U (Z )U (Z) exp(-T r) 
n   n o n     '^  n 

and 

^n=  --^K^\^\^^^^' (41) 

Note that this expression neglects ef- 
fects due to surface reflection losses 
and volume absorption. To obtain Eq. 
(40) from Eq. (39) Pedersen and Gordon 
break down the separation parameter, 

n» ^^ 
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k = k -a   -IT 
n    o  n   n (42) 

where generally k (=27rf/C ) is much 

greater than either a or 7 . In terms 

of the eigenvalues, MX , the separation 

parameter may also be expressed as 

2 ? 1 /? 
k = [k  - MX (Vl/Z^y]    ' 
n   "^ o     n    L  ^ 

= k -(2k ) "■'■ MX (M/Z ^2    (43) 
00       n    L' 

Comparing Eqs. (42) and (43) yields the 
following expressions for a    and 7 : 

a = (2k ) ^ (M/Z )^Re(MX ) 
no       L      n 

and 

T =(2k )"•'■ (M/ZJ^Im(MX ) 
no       L      n 

(44) 

(45) 

H^Q = -20 log[exp(-T^r)] 

= 8.686  T,r (48) 

The only remaining problem pertains to 
the imaginary part of the eigenvalues, 
Im(MX ) . The calculations involved in 

n 
detemining the MX are much too horren- 

dous to be included in models like 
NISSM and especially SHARPS. A change 
in frequency or any of the profile 
parameters C , g , and Z  results in a 

different set of eigenvalues. Thus to 
accommodate stringent computer-time re- 
quirements, a compromise must be made. 
Any given set of eigenvalues may be 
"indexed" by the parameter p, where 

'    = -%^h 

or 

P= -(ISo/gil) 
1/3 (49) 

If the channel strength parameter M, is 
expressed in terms of frequency and 
profile parameters then the expression 
for T can be written as 

n 

r^=(ufgJ)^/X^'^(^n) (46) 

Near   cutoff   Eq.    (40)   reduces   to   the 
single-mode  expression 

H =  10  log  r -  10   log   (C /f) 

- 20  log[|U^(Z^)U^(Z)|] 

- 20  log[exp(-r^r)] (47) 

The first-mode attenuation term is the 
part that is appended to the AMOS sur- 
face duct equations. The remaining fac- 
tors are assumed to be analogous to 
existing terms in the AMOS model. Thus 
the cutoff term takes the form 

where g and g are in-layer and below- 

layer sound velocity gradients. The 

possible combinations of g  and g-, are 

infinite, and hence there are as many 
possible choices of p. A value of 
-0.378 was selected for p. This value 
represents what the developers of the 
NISSM model felt was the most realistic 
compromise. Figure 10 illustrates se- 
lected curves of IM(MX ) versus the n 
channel strength parameter M. 

A slight improvement could be made to 
this approach by simply including addi- 
tional curves corresponding to several 
values of p. In this way, all practical 
combinations of the gradients could be 
accommodated through interpolation. 
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IMAGINARY PART OF 
THE EIGENVALUE 

.3779 

Figure 10. Imaginayy part of eigen- 
values versus M (from Watson and 
McGirr [1966] 

3.4 Assessment of AMOS Depth Dependence 

A major deficiency to look for in a 
simple model is its inability to repre- 
sent the proper dependence of all im- 
portant factors involved. Such a defi- 
ciency was discovered with the frequen- 
cy dependence (for low frequencies) of 
the original AMOS model, and hence a 
low-frequency cutoff term was appended. 
In this section, the depth-dependence 
of the AMOS surface duct equations is 
examined. Depth-dependence is repre- 
sented in these equations by two 
depth-loss functions. Actually these 
functions also involve frequency, but 
their sensitivity to sonar and target 
depths is the primary concern here. The 
first   depth-loss    function,    denoted   by 
G(Z   ,   Z),   appears  in Eqs.   (Al)   and   (A2) 

o 
(Appendix  A).   It   takes   the  form 

G(Z   ,Z)   =   (F/25) 
o 

1/3 

0.1 X lo'-^lyo - yl' l^o - yi < 1 

20, ly„ - y| > 1, (50) 

,1/2 where  F  =  f/1000,   y   =(Z  /Z^)-^'^  and y = ■'o o    L' ■' 
The   variables   Z     and   Z   are o (Z/Zj^) 

1/2 

and Z  is the layer depth. The second 

depth-loss function, denoted by K(Z , 

Z), appears in Eqs. (A2) and A3), and 
it takes the form 

y _,   y    I y-y^ I 
K(Z ,Z) = [10  + 10 + 10 

1, F < 8 kHz 

(F/8)^''-^, F > 8 kHz (51) 

To isolate the effects of these two 
functions, the depth-dependence of Eqs. 
(Al), (A2), and (A3) are examined at 
three ranges. The effects of the func- 
tion G(Z , Z) can be isolated by selec- 

ting a value of range, r, such that 
r < r . Referring to Eq. (49), r  is 

seen to be the maximum range for which 
Eq. (Al) applies. Similarly the effects 
of K(Z , Z) can be isolated by selec- 

o 
ting a value of range such that r > r 

+ r . Referring to Eq. (47), r + r  is 

seen to be the minimum range for which 
Eq. (A3) applies. The effects of G and 
K in combination can be examined by 
selecting a value of r that lies mid- 
way between r and r + r . 

s     s   c 

As a control to compare against, simple 
WKB solutions are evaluated as a func- 
tion of depth at the same ranges. The 
normalized eigenfunctions are given by 
Eqs. (9a) and (9b). For cases that 
yield a sufficient number of strongly 
trapped modes, WKB solutions yield rea- 
sonable results except when evaluated 
too close to turning point depths. How- 
ever, since the assessment here is re- 
stricted to in-layer geometries, inter- 
polation of the U  (Z) between points 

on either side of turning point depths 
yields results that are reasonably 
close to their normal mode counter- 
parts. 

sonar and target depths, respectively. 
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The expression for mode attenuation is 

a = - 10 log[exp(-2b )] n 

(see for example Kibblewhite and Den- 
ham, (1965). In this expression the 
mode dependent factor b  is given by 

-Im(k )/(2K ) 
n    n 

= (2D ) ^ exp[-(4/3)k 6^^^ 
n CO 

for r < r  (spherical spreading zone) 

H^ = 20 log r + (r/r^) G (Z^,Z),   (54) 

for r„ < r < r + r (transition zone) s       s   c 

H^ = 20 log r + (1 - 6) G (Z^, Z) 

+ SK(Z , Z) + H 
O CO 

(55) 

(1 + e„/3,)(Z^ - Z )^/^]      (52) 
OIL   n 

where ^^ = 22^/0^. /3^ = -Ig^lC^   and Z^ 

is the upper turning point depth of the 
n-th "mode". The quantity D  is the 

n 
cycle distance of mode n, and can be 
expressed in terms of the range inte- 
gral of Eq. (3) evaluated from the sur- 
face to the turning point depth, Z . 

Using Eq. (52) to calculate "modal" at- 
tenuations and neglecting volume atten- 
uation and surface reflections, the WKB 
expression for in-layer incoherent 
propagation loss, H , is 

H = 10 log(2T7) + 10 log r 
w 

^ 
10 log(>  P^) (53) 

where 

P = U  (Z ) U  (Z) exp(-b r). n   n ^ o'  n ^ -^   *^  n 

The depth-dependence of Eq. (53) is 
compared to the appropriate AMOS equa- 
tion. The particular AMOS equation to 
be compared against depends on the ap- 
plicable range regime. Shed of volume 
attenuation and surface reflection loss 
terms, the AMOS equations reduce to: 

where 

5 = (r -r )/r 
s  c 

and  for  r  >  r  + r   (cylindrical 
spreading zone) 

H = 10 log r + 10 log(r + r ) 
A. S     C 

+ K(Z , Z) + H  . 
O CO 

(56) 

Figure 11 illustrates propagation loss 
versus depth evaluated (from left) at 
ranges of 4, 8, and 12 kyd. AMOS and 
WKB results are presented for a fre- 
quency of 2.5 kHz, a source depth of 20 
ft and with receiver depth varying in 
one-foot increments from the surface 

R = 4kvcl 12 kyd 

70    80    90 70   80    90 70    80    90 

PROPAGATION LOSS(dB) 
AMOS WKB 

Figure 11.  Comparison of AMOS and 
WKB depth dependence 

19 



down to the layer depth. The sound ve- 
locity at the surface is 4950 ft/sec, 
the layer depth is 150 ft, and the in- 
layer and below-layer velocity gradi- 
ents are 0.02 and -0.33 1/sec, respec- 
tively. The dashed, nearly straight 
curves represent the AMOS results. The 
WKB results, indicated by the solid 
curves, exhibit far more depth- 
dependence than their AMOS counter- 
parts. Indeed, the AMOS curves demon- 
strate extremely scant variation with 
depth. A slight slope is barely per- 
ceptible in the AMOS curves, and they 
are essentially constant with depth. 
Their most significant departure from 
what is expected is disclosed by the 
finite value at the surface. The WKB 
solutions are subject to the require- 
ment of zero pressure at the surface, 
and hence the loss evaluated there is 
infinite. Actually this particular dis- 
crepancy of the AMOS model is not a 
serious drawback as far as SHARPS ap- 
plications are concerned, since most 
sonars and targets of interest are 
situated at depths of at least 20 ft or 
more. 

A more serious deficiency is the lack 
of any "mode-like" dependence on chan- 
nel gradients. As the in-layer gradient 
decreases, the number of trapped modes 
likewise decreases. There is no way to 
account for this behavior in the AMOS 
surface duct model. the gradient- 
sensitized zone delineation parameters 
exhibit the correct variation, but the 
depth-dependent factors do not properly 
compensate for off-setting mechanisms 
such as modal excitation or leakage. 

4.0 Near-Surface Propagation Modeling 

Many of the sound velocity profile con- 
figurations discussed in Section 2 ex- 
hibit substantial departure from the 
idealized two-layer surface duct model. 
Indeed, the variation in profile con- 
figurations suggests that the AMOS 
model and perhaps other candidate near- 
surface models are unable to meet Fleet 
prediction requirements. This section 

reviews long-standing near-surface 
channel issues, and presents results of 
a recent evaluation of three operation- 
al surface duct models. 

4.1 A Review of Near-Surface Channel Issues 

Results reported by both Morris (1974) 
and Hall (1980) indicate that, when 
compared to experimental surface duct 
da;ta, the AMOS model does about as 
well, on average, as more sophisticated 
normal mode models. This conclusion 
should not be interpreted to mean that 
the AMOS model is as accurate as normal 
mode theory. As Hall also notes, on a 
case-by-case basis normal mode theory 
does a better job than the AMOS model. 
Unfortunately, as discussed in Section 
2, the configuration of a surface duct 
does not sustain itself over either 
long durations or long ranges. Indeed, 
the channel above the sonic layer depth 
can conform to a wide variety of con- 
figurations. The point is, even if the 
AMOS model does an acceptable job of 
predicting surface duct propagation 
loss, at least on average, it cannot 
handle several other important near- 
surface channel configurations. 

The following issues are pertinent to 
SHARPS and perhaps to other operational 
prediction models as well. 

1. isovelocity and weak-gradient 
channels 

2. the afternoon effect 
3. non-symmetric depressed ducts 
4. multiple duct coupling 
5. coupling of rough surface effects 

No attempt is made here to prioritize 
these issues. Most of them are long- 
standing issues, and they are all im- 
portant . 

Isovelocity and weak-gradient channels 
can probably be modeled, at least as an. 
interim measure, by the surface duct 
equations of Advanced AMOS. Computa- 
tional problems caused by zero gradi- 
ents can be avoided by limiting the 
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gradient to some arbitrary lower bound, 
say 0.005 1/sec. Such an ad hoc proce- 
dure creates a bit of consternation, 
however, since the depth-dependent 
functions used in AMOS are based on 
data collected under conditions of 
energy trapping. Without the requisite 
energy barrier present, the AMOS depth- 
loss functions no doubt give erroneous 
results. ] 

The afternoon-effect profile is very 
similar to the classical surface duct 
profile except for the upper few meters 
where there is a (sometimes sharp) 
negative gradient. Its occurrence may 
be more prevalent than indicated by the 
SUDS I statistics (Sect. 2.2). The 
presence of such configurations is elu- 
sive to measurement programs, owing to 
their transient nature. Properly ac- 
counting for the negative gradient in 
the upper few meters can be crucial in 
modeling the detection performance of 
hull-mounted sonars. Unless some "rule 
of thumb" can be appended to the AMOS 
model to properly modify its subsurface 
duct predictions, a three-layer propa- 
gation model is probably required. The 
subsurface duct equations of AMOS are 
not appropriate without modifications, 
since they require a profile configura- 
tion that is (nearly) symmetrical. 

A related problem is one posed by non- 
symraetric depressed channels in gener- 
al. Such profiles tend to present a 
modeling problem because, typically, 
their gradients are weak and hence 
leaky modes become important contribu- 
tions to propagation loss calculations. 
Approximate methods (e.g., WKB-inspired 
solutions) yield elusive computational 
adventures at best. Even precise normal 
mode codes run into numerical problems 
in attempts at finding eigenvalues for 
profiles replete with weak gradients 
(Pedersen and McGirr, 1982). 

The multiple duct coupling problem is 
especially crucial to modeling the de- 
tection performance of variable depth 
sonars and tactical towed arrays. A 
receiver positioned within a subsurface 

duct could, under the right conditions, 
pick up signals generated by a target 
positioned in an overlying surface 
duct. However, the current version of 
AMOS used in the SHARPS model cannot 
simulate this type of coupling phenome- 
non. 

The coupling of rough surface effects 
is probably a moot point as long as the 
AMOS model is retained as the SHARPS 
near-surface propagation model. If, on 
the other hand, a decision is made to 
replace AMOS with a more sophisticated 
normal mode (or mode-like) model, then 
this issue is pertinent. Barnard and 
Deavenport (1976) have demonstrated how 
WKB techniques can be exploited to en- 
hance predictions generated by the 
Pedersen and Gordon surface duct model. 
Bucker (1980) uses a mode-coupling 
scheme to fully integrate surface scat- 
tering into the mode solution. Results 
obtained by using various coupling 
schemes are in dramatic contrast with 
results obtained by using a simple add- 
on approach. 

The issue of confidence bounds has been 
around long enough to have disappeared 
from the list of issues. But it is 
still an issue. The idea of generating 
a detection range interval vice a par- 
ticular range makes a lot of sense, 
especially for prediction models like 
SHARPS. Forecasts intended to cover a 
specified time period cannot reliably 
predict instantaneous results based on 
data derived from a long string of av- 
erages supplemented by archived data. 
Although all terras of the sonar equa- 
tion are affected by fluctation phenom- 
ena, the development of a simple scheme 
to estimate a confidence envelope for 
propagation loss predictions would go a 
long way toward solving the total prob- 
lem. 

4.2 Operational Surface Duct Propagation 

Models 

This section presents highlights from a 
recent review of three operational 
propagation loss models, with comments 
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restricted to their performance in pre- 
dicting surface duct loss. At the out- 
set some clarification of what passes 
as an operational model is in order. 
The significance of the term operation- 
al is somewhat elusive, and no attempt 
is made here to be precise in the mat- 
ter. Certainly any model that is rou- 
tinely used in support of Fleet opera- 
tions can be considered an operational 
model. On less solid grounds are those 
models that are excluded from the Fleet 
support category but are relatively 
user friendly and enjoy wide usage 
throughout the ASW R&D community. 

The three models of interest here are 
FACT, FAME, and RAYMODE. FACT (Fast 
Asymptotic Coherent Transmission) and 
RAYMODE have been widely used through- 
out the ASW R&D community for more than 
10 years. Moreover, both of these 
models (or derivatives therefrom) are 
being used as components of operational 
performance prediction models. They 
have been subjected to minor modifica- 
tions from time to time, and both are 
presently under configuration manage- 
ment control (CMC). FAME (Fast Multi- 
path Expansion) is a relatively new 
model and is not yet under CMC. 

The mathematics and physics behind each 
of these models are presented in vari- 
ous documents. FACT uses modified ray 
theory to calculate propagation loss 
via bottom reflected and RSR paths. To 
the most recent verison, special mod- 
ules based on normal mode theory have 
been added to calculate propagation 
loss for surface ducts and half chan- 
nels. The modified ray theory used in 
the original version of FACT is docu- 
mented in a report by Spofford (1974). 
Except for improvements to the caustic 
correction algorithms, this documenta- 
tion is still applicable for bottom 
reflected and RSR paths. Improvements 
to the treatment of caustics are docu- 
mented in a report by Spofford, et al. 
(1977). The surface duct and half chan- 
nel modules are documented by Ryan 
(1980, 1982). The multipath expansion 
(MPE) method is described in an article 

by Weinberg (1975). Additional remarks 
can also be found in a report documenf- 
ing the Generic Sonar Model (GSM) 
(Weinberg, 1979). Documentation of the 
RAYMODE model has always been difficult 
to get. However, some hard-to-get docu- 
ments that are helpful in understanding 
the model physics are the reports by 
Lelbiger (1968 and 1971). Other docu- 
ments pertinent to the physics of FACT 
and RAYMODE are the evaluation reports 
by Bartberger (1978b, 1981) and Deaven- 
port (1978). An excellent summary of 
propagation modeling in general, which 
also includes discussions pertaining to 
both the multipath expansion method and 
the RAYMODE method, is presented by Di- 
Napoli and Deavenport (1979). 

Both FACT and RAYMODE have special 
"stand-alone" modules for calculating 
surface duct propagation loss. FAME 
does not, however, and hence comparing 
the times that these models spend on 
surface duct calculations presents a 
problem. Out of deference to the FAME 
model, Keenan (1983) presents compu- 
tation times that include bottom re- 
flected paths as well. Keenan compares 
computation times for ten environments. 
For each of these, the source depth is 
at 50 ft and computation times for 
separate model runs are presented for 
two receiver depths, 50 ft and 300 ft, 
and for three frequencies, 500, 1000, 
and 4000 Hz. Mean computation times 
derived from these ten cases indicate 
that FACT is roughly twice as fast as 
RAYMODE and at least an order of mag- 
nitude faster than FAME. 

Keenan (1983) takes two approaches in 
evaluating the accuracy of these 
models. In one approach, the three 
models are evaluated strictly on a com- 
parative basis (a PE model was also 
exercised against the same inputs but 
unfortunately these results are not 
included). In a second approach, the 
models are compared to data measured 
during the SUDS I experiment. Conclu- 
sions are difficult to draw from the 
strictly comparative results. Keenan 
presents  curves  generated  by  these 
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models in typical overlay fashion. Both 
coherent and incoherent results are 
presented. Normally, incoherently 
summed propagation loss calculations 
yield curves that exhibit a fairly 
smooth variation with range, except of 
course in regions like convergence 
zones where a certain amount of multi- 
path beat-structure is typically evi- 
dent . 

For most of the cases presented, both 
FAME and RAYMODE exhibit (but not con- 
sistently) saw-tooth structure in their 
incoherent results. The reason for such 
unexpected coherent-like structure is 
not at all clear, but its presence 
makes comparative analyses nearly im- 
possible. For those cases where the 
RAYMODE incoherent outputs are fairly 
smooth there is good agreement between 
FACT and RAYMODE. For those cases where 
the RAYMODE incoherent outputs are 
choppy there appears to be good agree- 
ment between FAME and RAYMODE. 

Comparisons againt SUDS data are pre- 
sented for two frequencies, 400 and 
1000 Hz, and several combinations of 
source and receiver depths. At 400 Hz 
RAYMODE is consistently close to the 
experimental data, whereas FAME is far 
too optimistic and FACT is far too pes- 
simistic. At 1000 Hz the comparisons 
are inconsistent, although FACT appears 
to hang with the data closer than the 
other two models, especially at ranges 
exceeding about 10 km. FACT appears to 
be the most accurate of the three at 
the higher frequency. It is certainly 
the fastest, and, therefore, it may also 
be worth considering as a replacement 
for the AMOS model. 

5.0 Conclusions and Recommendations 

The near-surface channel configurations 
addressed by the current version of 
SHARPS are too limited. The options are 
limited to surface ducts and subsurface 
ducts, as modeled by the Advanced AMOS 
equations. All other channel configura- 
tions are handled by ray theory. The 
omission of a mechanism to account for 

cross-duct coupling is a glaring defi- 
ciency, especially in view of the 
latitude in depth available to modern 
submarines. Criticizing a model as 
vulnerable as SHARPS is easy. What is 
not so easy is how to reconcile defi- 
ciencies without introducing computer 
code that consumes an excessive number 
of CPU seconds. 

The options addressed here are placed 
into three levels. These levels corre- 
spond to two extremes and a compromise. 
One extreme is dictated by severe 
computer-time constraints imposed on 
models that are used in generating 
daily forecasts at FNOC. The other ex- 
treme allows for solutions to be formu- 
lated with no considerations given to 
computer time-storage constraints. Mid- 
way between these extremes lies a set 
of compromise solutions that, in turn, 
are contingent on a slight relaxation 
of current computer-time constraints. 

LEVEL I: Under presently imposed 
computer-time constraints, virtually no 
additional computing time can be con- 
sumed by modifications to SHARPS. This 
criterion effectively limits improve- 
ments to those that might enhance the 
existing surface duct and subsurface 
duct models (e.g., more modifications 
to AMOS). There are two modifications 
that could yield improvements from the 
AMOS model. One modification entails 
deriving new depth-loss functions from 
normal mode theory. Actually, this ap- 
proach has already been applied and the 
results have been used to complement 
the ray theory calculations in PLRAY 
(Bartberger, 1978a). The advantage of 
this approach is that the resulting 
depth-dependent functions would exhibit 
a more realistic sensitivity to in- 
layer and below-layer sound velocity 
gradients. 

A f3econd modification entails appending 
an energy-barrier transmission coeffi- 
cient to simulate surface duct to sub- 
surface duct coupling. That is, the 
amount of energy that tunnels through 
the barrier separating the ducts could 
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be approximated by a WKB transmission 
coefficient. This coefficient is ob- 
tained by integrating over the vertical 
wave number from a turning point depth 
in the surface duct to a conjugate 
turning point depth in the subsurface 
duct. Since AMOS does not sum over 
modes, only one pair of turning points 
would be appropriate. This approach is 
strictly ad hoc in nature, and consti- 
tutes pushing the applicability of the 
time-worn AMOS model well-beyond its 
intended limits. 

Barnard, G. R. and R. L. Deavenport 
(1978). Propagation of Sound in Under- 
water Surface Channels with Rough 
Boundaries. J. Acoust. See. Am., 63: 
709-714. 

Bartberger, C. L. (1978a). PLRAY~A Ray 
Propagation Loss Program. NADC Report 
77296-30, 26 October. 

Bartberger, C. L. (1978b). The Physics 
of the FACT Model. End (1) to NUSC/NL 
Itr ser 9312-55, 19 December. 

LEVEL II: A number of options open up 
at this intermediate level. The easing 
of computer-time constraints that would 
be necessary is not quantifiable at 
this conceptual stage. No doubt some 
slight adjustments would have to be 
made to the present forecasting sched- 
ule . 

At this level most of the current near- 
surface modeling deficiencies could be 
eliminated. Ryan (1983) has indicated 
that phase integral methods could be 
exploited to develop an approximate, 
four-layer normal mode model. Thus most 
of the near-surface channel configura- 
tions discussed in Sect. 2 could be 
modeled. Moreover, cross-duct coupling 
could be modeled using WKB techniques. 

LEVEL III: The prerequisite for con- 
sidering level-Ill options is a sig- 
nificant upgrade in computing power. 
With adequate computing facilities a 
high-volume load could be accommodated 
without having to make sacrifices in 
model physics. Indeed, a multi-layer 
normal mode treatment could be applied 
to all modes of propagation, complete 
with mode coupling to account for both 
forward- and back-scattering effects. 
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Appendix: AMOS Surface Duct Model 

The purpose of this appendix is to pre- 
sent the basic (pre-NISSM) AMOS surface 
duct equations. Expressions for volume 
absorption and surface reflection loss 
are omitted. Essentially there are four 
propagation loss equations. Three of 
these give propagation loss correspond- 
ing to spreading-law regimes. The 
fourth equation provides an upper bound 
(on the loss) to the other three. With 
Z  and Z denoting, respectively, source 

depth and receiver depth, AMOS propaga- 
tion loss H  is given by 

H^ = 20 log r + a r + (p/p ) G(Z ,Z) 
A v       s     o 

(Al) 

H^ = 20 log r + a r + (1 - d) G(Z ,Z) 
A V o 

+ d K(Z ,Z) 
o 

where 

d = 2(p-p^) 

(A2) 

H = 10 log r + a r + K(Z ,Z) 
A V        O 

+ [r - Z^^p + l/2)]a^ 
1.1    s       ,  s 

10 log [Z^^CP  + 1/2)] 
ij    s 

(A3) 

H, = 20 log r + a r 
A V 

+ [25- (Z^-Z^)'/' 

- ( Z - Z  )^/2 + 5r] (F/25)^/2 

(A4) 

where F=f/1000 and the depth-loss func- 
tions G and K are given by Eqs. (50) 
and (51). The scaled parameters P   and 
p  are discussed in Section 3.2. Sur- 
s 

face roughness e'ffects and column ab- 
sorption losses are represented by the 
attenuation coefficients a    and a . Eq. 

s      V 
(Al) is essentially a spherical- 
spreading law with an additional depth- 
loss function, G(Z ,Z). Eq. (A3) is 

essentially a cylindrical-spreading law 
with an additional depth-loss function, 
K(Z ,Z). Eq. (A2) provides a smooth 

transition from spherical spreading to 
cylindrical spreading. Eq. (A4) pro- 
vides an upper bound on propagation 
loss. This last equation is always com- 
pared with whichever of the other three 
is applicable and the smallest value is 
used for the final result. The 
spreading-law zones are delineated by 
using the scaled parameters^ p and p s      s 
+ 1/2. 

Spherical spreading: p <   p 

Eq. (Al) applies 

Transition zone: p 
Eq. (A2) applies 

<  P <   P    +1/2 
s       s 

Cylindrical spreading: p >   p   +  111 
s 

Eq. (A3) applies 
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